Complete Arcs in Steiner Triple Systems

نویسندگان

  • Charles J. Colbourn
  • Jeffrey H. Dinitz
چکیده

A complete arc in a design is a set of elements which contains no block, and is maximal with respect to this property. The spectrum of sizes of complete arcs in Steiner triple systems is determined without exception here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spanning sets and scattering sets in Steiner triple systems

A spanning set in a Steiner triple system is a set of elements for which each element not in the spanning set appears in at least one triple with a pair of elements from the spanning set. A scattering set is a set of elements that is independent, and for which each element not in the scattering set is in at most one triple with a pair of elements from the scattering set. For each v = 1,3 (mod 6...

متن کامل

Generating Sets in Steiner Triple Systems

A k-generating set generalizes the notion of a complete arc. Consider the Steiner quasigroup (V, 0 ) of a Steiner triple system. Let W C V. Then (some) elements of V \ W can be written in the form w 0 w for w,w £ W. In turn, further elements can be written in the form w0 ( w 0 w ) , and so on. If every element of V can be written using elements of W and at most k — 1 applications of 0 , then W ...

متن کامل

A census of the orientable biembeddings of Steiner triple systems of order 15

A complete census is given of the orientable biembeddings of Steiner triple systems of order 15. There are 80 Steiner triple systems of order 15 and these generate a total of 9 530 orientable biembeddings.

متن کامل

Circulants and the Chromatic Index of Steiner Triple Systems

We complete the determination of the chromatic number of 6valent circulants of the form C(n; a, b, a+b) and show how this can be applied to improving the upper bound on the chromatic index of cyclic Steiner triple systems.

متن کامل

Bounds on the achromatic number of partial triple systems

A complete k-colouring of a hypergraph is an assignment of k colours to the points such that (1) there is no monochromatic hyperedge, and (2) identifying any two colours produces a monochromatic hyperedge. The achromatic number of a hypergraph is the maximum k such that it admits a complete k-colouring. We determine the maximum possible achromatic number among all maximal partial triple systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1997